Sixth Semester B.E. Degree Examination, July/August 2022 Microelectronics Circuits

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast THREE questions from Part-A and any TWO questions from Part-B.

PART - A

- a. Mention the voltage requirements of an enhancement NMOSFET to work in different regions of operation. Derive an expression for current I_{ds} in linear region of operation with necessary diagrams. (10 Marks)
 - b. Design the circuit of Fig.Q1(b) so that the FET operates at $I_{ds} = 0.4$ mA and $V_d = 0.5$ V. The NMOSFET has $V_{tn} = 0.7$ V, μ_n CO_x = 100 μ A/V², L = 1 μ m, W = 32 μ m and $V_{DD} = 2.5$ V.

1(b) (10 Marks)

- 2 a. Explain the graphical derivation of CS MOSFET amplifier transfer characteristics with suitable diagrams. (10 Marks)
 - b. Explain the working of single stage common gate MOSFET amplifier circuit. Define $R_{\rm in}$, $V_{\rm o}$, $A_{\rm Vo}$, $A_{\rm V}$ and $G_{\rm V}$ for the same circuit. (10 Marks)
- 3 a. Compare NMOSFET and BJJ with respect to the following parameters:
 - (i) Active region voltage values
- (ii) Current expression in the active region
- (iii) Low frequency T-model
- (iv) Transconductance g_m (08 Marks)
- b. Explain with suitable diagram current mirror and current steering circuits.
- (08 Marks)

c. Explain briefly cascade amplifiers.

- (04 Marks)
- 4 a. Design the current of Fig.Q2(a) to obtain an output current whose nominal value is $100~\mu A$. Find R if Q_1 and Q_2 are matched and have channel lengths of 1 μm , channel widths of $10~\mu m$, $V_t = 0.7~V$ and $k_n' = 200~\mu A/V^2$, what is the lowest possible value of V_0 ? Assume $V_A' = 20V/\mu m$. Find the out resistance of the current source. Also find the change in output current resulting from a +1V change in V_0 .

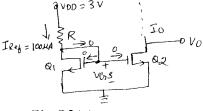


Fig.Q2(a) (10 Marks)

b. Explain the working of CMOS implementation of common source amplifier and define the voltage gain. (10 Marks)

5 a. Explain the operation of BJT differential pair configuration.

(10 Marks)

b. Explain the frequency response of current mirror loaded MOS differential pair circuit.

(10 Marks)

PART - B

- 6 a. Explain how noise reduction and band-width extension can be achieved using negative feedback with necessary diagrams and expressions. (10 Marks)
 - b. Explain the ideal structure of a series-series feedback amplifier with figures and expressions.

 (10 Marks)
- 7 a. Design an inverting op-amp circuit to form the weighted sum V_0 of two inputs V_1 and V_2 . It is required that $V_0 = -(V_1 + 5V_2)$. Select values for R_1 , R_2 and R_f so that for a maximum o/p voltage of 10V, the current in the f/b resister will not exceed 1 mA. (06 Marks)
 - b. Explain different amplifiers with neat diagrams.

(08 Marks)

c. Explain briefly Sample and Hold circuits.

(06 Marks)

8 a. Explain the following characteristics of a logic family.

(06 Marks)

- b. Write about the dynamic operation of CMOS inverter with necessary diagrams and expressions. (10 Marks)
- c. Draw the CMOS schematic and AOI implementation for

 $Y = \overline{AB + CD}$

(04 Marks)

* * * * *